Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Braz. oral res. (Online) ; 37: e081, 2023. tab, graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1505910

ABSTRACT

Abstract: This study tested a novel in vitro dental erosion-abrasion model and the performance of cross-polarization optical coherence tomography (CP-OCT) in longitudinally monitoring the simulated lesions. Thirty human enamel specimens were prepared and randomized to receive three dental erosion-abrasion (EA) protocols: severe (s-EA, lemon juice/pH:2.5/4.25%w/v citric acid), moderate (m-EA, grapefruit juice/pH:3.5/1.03%w/v citric acid) and no-EA (water, control). EA challenge was performed by exposing the specimens to acidic solutions 4x/day and to brushing 2x/day with 1:3 fluoridated toothpaste slurry, for 14 days. Enamel thickness measurements were obtained using CP-OCT at baseline (D0), 7 (D7) and 14 days (D14) and micro-computed tomography (micro-CT) at D14. Enamel surface loss was measured with both CP-OCT and optical profilometry at D0, D7 and D14. Data was analyzed with repeated-measures ANOVA and Pearson's correlation (r) (α = 0.05). CP-OCT enamel thickness decreased over time in the s-EA group (D0 >D7 > D14, p < 0.001) and m-EA group (D0 > D14, p = 0.019) but did not change in the no-EA group (p = 0.30). Overall, CP-OCT and micro-CT results at D14 correlated moderately (r = 0.73). CP-OCT surface loss was highest for s-EA (p <0.001) but did not differ between moderate and no-EA (p = 0.25). Enamel surface loss with profilometry increased with severity (no-EA>m-EA>s-EA, p < 0.001). D14 surface loss was higher than D7 for both methods except for the no-EA group with profilometry. CP-OCT and profilometry had moderate overall correlation (r = 0.70). Our results revealed that the currently proposed in vitro dental erosion-abrasion model is valid and could simulate lesions of different severities over time. CP-OCT was a suitable method for monitoring the EA lesions.

2.
Braz. dent. j ; 33(4): 54-61, July-Aug. 2022. tab
Article in Portuguese | LILACS-Express | LILACS, BBO | ID: biblio-1394094

ABSTRACT

Resumo Este estudo desenvolveu e testou géis experimentais contendo íons fluoreto (F-) e estanho (Sn2+) para o controle da erosão dentária. Os espécimes polidos, de esmalte e dentina, foram previamente erodidos (solução de ácido cítrico a 1%, 10 min) e alocados aleatoriamente em 5 grupos (n = 10): Placebo - gel de hidroxipropilmetilcelulose (HMC); F + Sn + HMC - 7.500 ppm F- / 15.000 ppm Sn2+; F + HMC - 7.500 ppm F-; Gel de flúor fosfato acidulado comercial (12.300 ppm F-); e Controle - sem tratamento. Após o tratamento (aplicado por 60 s), os espécimes foram submetidos a uma ciclagem de erosão-remineralização (5 min em solução de ácido cítrico a 0,3%, 60 min em saliva artificial, 4 × / dia, 20 dias). A perda de superfície (SL, em µm) foi determinada após o 5º, 10º e 20º dias de ciclagem (α = 0,05). Para o esmalte, após 5 e 10 dias, o F + Sn + HMC apresentou a menor PS, não diferindo do gel comercial. Após 20 dias, não foram encontradas diferenças entre os grupos comercial, F + HMC e F + Sn + HMC. O placebo não diferiu do controle em nenhum momento, e ambos os grupos apresentaram a maior PS, comparado aos demais grupos. Para dentina, no 5º dia , F + Sn + HMC, F + HMC e comercial não diferiram significativamente, apresentando menor PS que o grupo controle e placebo. No 10º dia, F+Sn+HMC e comercial apresentaram a menor PS comparado ao grupo controle e placebo. No 20º dia, apenas o gel comercial apresentou PS menor que o controle e o placebo. Assim, o gel experimental F + Sn + HMC foi capaz de controlar a progressão da erosão dentária.


Abstract: This study synthesized and tested experimental gels containing fluoride (F-) and stannous (Sn2+) ions for the control of dental erosion. Enamel and dentin polished specimens were eroded (1% citric acid solution, 10 min) and randomly allocated into 5 groups (n=10): Placebo - Hydroxypropyl Methylcellulose (HMC) gel; F+Sn+HMC - 7,500 ppm F- / 15,000 ppm Sn2+; F+HMC - 7,500 ppm F-; Commercial acidulated phosphate fluoride gel (12,300 ppm F-); and Control - no treatment. After treatment (applied for 60 s), specimens underwent an erosion-remineralization cycling (5 min in 0.3% citric acid solution, 60 min in artificial saliva, 4×/day, 20 days). Surface loss (SL, in µm) was determined after the 5th, 10th and 20th days of cycling (α=0.05). For enamel, after 5 and 10 days, F+Sn+HMC presented the lowest SL, which did not differ from the commercial gel. After 20 days, no differences were found between commercial, F+HMC, and F+Sn+HMC groups. Placebo did not differ from the control at any time points, and both groups presented the highest SL when compared to the other groups. For dentin, on the 5th day, F+Sn+HMC, F+HMC and commercial did not differ significantly, showing lower SL than the control and the placebo. On the 10th day, F+Sn+HMC and commercial presented the lowest SL compared to control and placebo. After 20 days, only the commercial gel showed lower SL than the control and placebo. Thus, the experimental F+Sn+HMC gel was able to control the progression of tooth erosion.

3.
J. appl. oral sci ; 30: e20210643, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1375708

ABSTRACT

Abstract Objective The aim of this study is to test, in vitro, the anti-cariogenic effect of experimental hybrid coatings, with nano clays of halloysite or bentonite, loaded with sodium fluoride or with a combination of sodium fluoride and stannous chloride, respectively. Methodology The varnish Fluor Protector (1,000 ppm of F-) was used as positive control and no treatment was the negative control. Enamel specimens (5 mm × 5 mm) were obtained from bovine teeth. The specimens (n=10) had their surfaces divided into two halves (5 mm × 2.5 mm each), in which one half received one of the treatments (Hybrid; Hybrid + NaF; Hybrid + NaF + SnCl2; Hybrid + NaF Loaded; Hybrid + NaF + SnCl2 Loaded). The specimens were submitted to a cariogenic challenge using a biofilm model (S. mutans UA159, for 5 days). Enamel surfaces both under and adjacent to the treated area were analyzed for mineral loss and lesion depth, by transverse microradiography. The pH of the medium was measured twice a day, and the fluoride release was analyzed. Additional specimens were submitted to confocal analysis. Results Data were statistically analyzed by two-way ANOVA followed by Tukey test (α=0.05). None of hybrid groups were able to reduce the lesion depth; the Hybrid + NaF group, however, was able to reduce mineral loss differing from the negative control (p=0.008). The groups showed no significant difference in the pH measurement and fluoride release. Confocal analysis confirmed that for all groups the biofilm growth was similar. Conclusion None of the hybrid groups reduced lesion depth, but the Hybrid + NaF group was able to promote protection against mineral loss.

SELECTION OF CITATIONS
SEARCH DETAIL